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PROTEIN FOLDING

Proteins fold into their native structures by minimizing their free energy.

, A
A U
A protein’s native state = its free energy Entropy Unfolded
minimum = properly folded or assembled form.
When proteins don't fold correctly to their

lowest energy state, they are misfolded or
Energy ~

denatured. \:\}7
Molten globule

Misfolded proteins — negative effects.
Ex. neurological diseases such as Parkinson'’s,
Alzheimer's and Huntington's stem from

abnormally folded proteins et
Energy Landscape




THE PROTEIN FOLDING PROBLEM

How can a protein's amino acid sequence dictate its
three-dimensional atomic structure? *

Sequence Structure
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THE PROTEIN FOLDING PROBLEM

How can a protein's amino acid sequence dictate its
three-dimensional atomic structure? *

conformations (Levinthal's Paradox)? How does the protein know what

I I How can a protein fold so quickly despite a vast number of possible
conformations not to search?

s it possible to create an algorithm to predict a protein’s native structure
based on its amino acid sequence alone?




COMPUTATIONAL (CURRENT) LIMITATIONS

Funnel Diagram of Energy Landscape Time and efficiency are both obstacles- our
today's (classical) computers lack the
computational power to effectively model the
folding of these proteins.

Proteins larger than 150 residues are unable to =

be computed classically.

No classical algorithm exists that is able to find EEEE
~ " the lowest energy state of a lattice protein EEEE
< within polynomial time, = 1

-l

20 types of amino acids =

pref
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GUANTUM ANNEALING

Qubits = quantum bit that can be in the state of O, 1, or a superposition of O and 1 at the
same time. (states 00, 01, 10, 11), which allows for calculations to be run simultaneously.

n qubits = 2" solutions able to be run at the same time — speedup is ideal for optimization
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e Quantum Computing helps choose a set of biases of couplers (affecting the final
state of the qubits) that defines an energy landscape
e Quantum Annealing helps find the minimum energy of that energy landscape ’



Cost of Energy

GUANTUM ADVANTAGE

4  Tunneling = less computationall

Simulated Annealing (Thermal Jump)
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Global
Quantum Annealing Minima

(Quantum Tunneling)

y expensive

Solution/System Configuration

Quantum Annealing

Adaptive; works with a
gradually decreasing
parameter

Not limited by barrier
width and height

On QPU: superposition
of qubits with couplers
and biases allow for
efficient search where
testing with the
algorithm is completed
simultaneously ®



RESEARCH QUESTION

Can quantum computing methods speed up the process when finding the
lowest energy conformations of an amino acid sequence?

HYPOTHESIS

The method that leverages quantum annealing with turn ancilla encoding
on a regular CPU will yield the most effective results in terms of the
highest number of instances that occured in the lowest energy

conformations in the least amount of time. -
11
. . . . . . EEEE
This method is a hybrid of both classical simulated annealing and quantum EEN
annealing, where it can leverage the “speedups” within qguantum annealing 0 =
but will not be susceptible to noise and decoherence as experienced with 111
. ENEEN
quantum hardware when running on a QPU. -==
EEER



METHODS 4



EXPERIMENT OVERVIEW AND DETAILS

OBJECTIVE

Using quantum annealing on a quantum computer to explore its benefits in terms of speedups
and increased accuracy (over classical computers) by simulating 2D lattice protein folding.

OVERVIEW

Tests the efficiency in the folding of amino acids in varying residue lengths in 3 parts:
1) Simulated Annealing with Conventional Monte Carlo
2)  Quantum Annealing with Turn Ancilla Encoding on a CPU
3) Quantum Annealing on D'wave's quantum computer (QPU)

Within each of the three parts, 3 different types of amino acid sequences will be tested:
1) 6 Residues
2) 9 Residues
3) 12 Residues

What will be measured in each trial:
1) Number of lowest energy conformations achieved
2) Time to reach the minimum energy state



EXPERIMENT OVERVIEW AND DETAILS B

VARIABLES: INDEPENDENT, DEPENDENT, CONTROL

Independent: Residue Length (either 6, 9, or 12 residues), Type of Method Tested (Quantum Annealing on
CPU or Quantum Annealing on QPU)

Dependent: Number of instances in the lowest energy conformations for each amino acid, Time it takes
to each the minimum energy state

Control Variable: Simulated Annealing with Conventional Monte Carlo (method that is currently being
used today)

MATERIALS

e D'wave’s Leap API Integration for 2000-Qubit Annealer .===
e Modern Operating System consisting of x86 64-bit CPU (Intel / AMD architecture) with at least 4 EEE
GB RAM and 5 GB free disk space. For this experiment, the Mac OS Mojave Version 10.14.5 with a 0 .===
1.1 GHz Intel Core m3 was used. EEEN
e Python Version 3.7.4 o ===
e Interactive web-based computational environment, ex. Jupyter Notebook was used. ..==



12

ALGORITHMS - SIMULATED ANNEALING ' = . .

Approximates the global optimum of a function with the slow decrease in
the probability of accepting worse solutions as the solution space is explored

E= 852 T=125

Define a schedule for annealing temperature T

12

Randomly choose its residue r. il

Perform random walk, with respecttor,_, 8f

Compute energy change in energy AE =E - E’ i

Accept step if exp(-AE/T) expresses the probability
of a state of energy E relative to the probability of a 2

OJONONORC)

] [ ] |
state of zero energy > random.uniform(0,1). of
HEE
If AE <=0, always accept Ll EEEN
S S HEN
Probab|l|t\/ = 1+e_%i 4a 2 o0 2 4 6 8 10 12 14 16 u .===
. . . . EEEN
@ proceSS repeats as T N O SlmU/atEdAnnea//ng to Find Opt/mum . ...
1]
"Dimitris Bertsimas, John Tsitsiklis. "Simulated Annealing"" Statist. Sci. 8 (1) 10 - 15, February, 1993. https:/doi.org/10.1214/ss/1177011077 . . = =



ALGORITHMS - TURN ANCILLA ENCODING® - =sE

Simulates random walks within a 2D lattice by adding constraints and
requirements on where the protein folds. This is during the process of minimizing
the objective function when finding the lowest energy conformations.

@ [ J [ J [ ] [ ] [ ]
oo, 5
° J ) . . . .
20 44 G)-@ /- T Z Binary representation of a 6-residue
: °c ° @ ° o lattice protein in turn ancilla encoding.
Encoding 010 0100
per turn

Two qubits are needed per bond and
the turn direction are denoted by 00

® @W™Q = == o (downards), 01 (rightwards), 10 1
(B=@)=(3) (leftwards) 11 (upwards) .===

0100101011 01001010 010010 H 11

13 2Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M. et al. Finding low-energy conformations of lattice protein models by quantum annealing. Sci Rep 2, 571 (2012). . .
https:/doi.org/10.1038/srep00571 . . . .


https://doi.org/10.1038/srep00571

ALGORITHMS - TURN ANCILLA ENCODING™ - =z

Simulates random walks within a 2D lattice by adding constraints and
requirements on where the protein folds. This is during the process of minimizing
the objective function when finding the lowest energy conformations.

E,..[a) — Penalizes protein fold if
back-to-back when 2 consecutive
edges go in between the same pair of
vertices

E(C|) = Eback(q) t Eoverlap(q) + Epair(q)

E (q) — Penalizes protein fold if

overlap ) )
lattice protein folds over itself

EEEN
E..d— Marks interaction between EEEE
non-bonded acids adjacent on a lattice | M 1]

14 8 Babbush, Ryan, et al. “Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in Constraint Satisfaction Programming and Adiabatic = =
Quantum Optimization.” ArXiv.org, 11 June 2013, arxiv.org/abs/1211.3422. . .



ALGORITHMS - QUANTUM ANNEALING®

Technique for finding global minimum of a given objective function over a set of candidate states by
using quantum computation methods (quantum tunneling), which allows for speedups over its
classical counterpart

(1) Define a schedule for annealing temperature T

@ Randomly choose it" qubit q,
(3) Perform a qubit flip

0) Compute energy change in energy AE=E - E' = ; 0

(5) Accept step if exp(-AE/T) expresses the probability _
a state of energy E relative to the probability of a

state of zero energy > random.uniform(0,1). EEE
If AE <=0, always accept . . . .===
1 Quantum Tunneling effect during annealing EEEE
- —AE allows the passage through an energy u EEE
Probability = l4e T o [ -
barrier (instead of going up and around the (TT1
ier with si ' ENEEN
. @ Process repeats as T50 barrier with simulated annealing) —1-
3Robert, A, Barkoutsos, P.K., Woerner, S. et al. Resource-efficient quantum algorithm for protein folding. npj Quantum Inf7, 38 (2021). https:/doi.org/10.1038/541534-021-00368-4 . . = =


https://doi.org/10.1038/s41534-021-00368-4

RESULTS



ANNEALING SCHEDULE
+ ENERGY LANDSCAPE

Steps During Annealing

Quantum annealing finds the

% “worst solutions,” ie. neighboring
solutions that increase the state
energy. Those solutions are
eliminated in order to find the
optimal.

Temperature (K)
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Temperature (K)
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ANNEALING SCHEDULE

+ ENERGY LANDSCAPE

Steps During Annealing
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ANNEALING SCHEDULE
+ ENERGY LANDSCAPE

Energy Landscape - Quantum Annealing with
Turn Ancilla Encoding
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19 # Steps

Quantum annealing finds the “worst -
solutions,” ie. neighboring solutions
that increase the state energy. Those
solutions are eliminated in order to
find the optimal.

Energy Landscape - Quantum Annealing with
D'wave’s Annealer
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SIMULATED ANNEALING
WITH MONTE CARLO (CONTROL)

6 Residues

Temperature = 32.000000
Energy = 0.00

-

9 Residues

Temperature = 9.924791
Energy = -4.66

R:y

12 Residues

Temperature = 1.122896
Energy = -19.34

$388

Lowest energy conformation:

67/360 = 18.6%

20 Runtime: ~12.2 seconds

3

Lowest energy cE)nformation:
48/360 = 13.3%
Runtime: ~25 seconds

-12
-12

Lowest energy conformation:

22/360=6.1%
Runtime: ~38 seconds



https://docs.google.com/file/d/1UuslGSzCjShbQ3J0m7P6pUQVZFSmhN40/preview
https://docs.google.com/file/d/1tkxl_zz-cGRIP01xV1g0SVxWtnfg-NkV/preview
https://docs.google.com/file/d/1eZqTZoHoHJUvmddF9Gg_J04FYgTQCEJZ/preview

GUANTUM ANNEALING WITH TURN ANCILLA.-
ENCODING

6 Residues 9 Residues 12 Residues

Temperature = 12.987003 Eempera_tull';36=98551113675
Temperature = 16.000000 Energy = 28708.37 nergy = -

Energy = 1620.00

=

“Lowest energy conformation: Lowest energy conformation: Lowest energy conformation: EEEN
625/720 = 86.6% 510/720 = 70.8% 440/720 = 61% o
2 Runtime: ~8 seconds Runtime: ~12 seconds Runtime: ~24 seconds


https://docs.google.com/file/d/1DSti79qzzdR-wMsyTknWi5PA43SJSI33/preview
https://docs.google.com/file/d/1zmyg8HFAo3e_UFLkour5FNmyMK6NfWHJ/preview
https://docs.google.com/file/d/1C553LZelj2oljebcaGhTYFNy4v4lbugW/preview
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QUANTUM ANNEALING WITH DWAVE'S QPU- =z=

QPU time used: 262 ms or 0.262 ms/read

mean:
[-0.0014 -0.0014 -0.0014 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013]
[-0.0014 -0.0014 -0.0014 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013]

4.64, sd:

1.93

state isvalid energy Hb Ho Hi count

0 1011011100111000110 True -1.391382e-03 0 0 -6.20 3
1 1111011101111110000 True -1.301616e-03 0 0 -5.80 8
2 0111011101111100000 True -1.301616e-03 0 0 -5.80 1
3 1011011101100000010 True -7.158887e-04 0 0 -3.19 1
4 1111011101111010000 True -6.754937e-04 0 0 -3.01 3
5 0110011100110100000 True -6.261221e-04 0 0 -2.79 1
6 0010001100110111100 True -6.261221e-04 0 0 -2.79 2
7 1111011100110110100 True -6.261221e-04 0 0 -2.79 2
8 1111011101110110000 True -6.261221e-04 0 0 -2.79 4
9 0001000101110001101 True -4.039497e-04 0 0 -1.80 1
10 0111011001110011001 True -4.039497e-04 0 0 -1.80 1
11 1111011101111110001 True -8.976661e-05 0 0 -0.40 1
12 0001000101110001100 True -2.081668e-16 0 0 0.00 1
13 0000011000000000000 True -1.387779-17 0 0 0.00 1

Conformation Reads

Energy Histogram
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QUANTUM ANNEALING WITH DWAVE'S QPU- =z=

Energy = -6.20

-6 4

Lowest energy conformation:

538/720 = 74.7%
23 Runtime: ~2.62 seconds

-10

Temperature = 0.500000 Temperature = 1.000000
Energy = 24.02 Energy = -14.84

T
2 E P
o TEYE D

Lowest energy conformation: Lowest energy conformatida:
449/720 =62.3% 370/720 = 51.4%
Runtime: ~8 seconds Runtime: ~12 seconds



RESULTS OVERVIEW -

Percentage of instances reaching lowest energy conformation

6 Residues 9 Residues 12 Residues

Conventional

Simulated Annealing 1. LEEL, Al

Quantum Annealing, . 0 0
Turn Ancilla Encoding 86.6% 70.8% 61.0% l====

Quantum Annealing,

0 0 0 | ot 11

4



RESULTS OVERVIEW -

Runtime (in seconds) to reach the minimum energy state

6 Residues 9 Residues 12 Residues

Conventional

Simulated Annealing (s 2SO 38.0s

Quantum Annealing, 8.0s 12.0s 240 SEEE
Turn Ancilla Encoding EEEEE

Quantum Annealing,

| | b 1
) , 2. 8.0 12.0
D'wave's Annealer e S - EEEN

25



DISCUSSION
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RESULTS ANALYSIS

Highest number of instances in successful energy conformations: Quantum
Annealing with Turn Ancilla Encoding
Lowest time to reach the minimum energy state: Quantum Annealing with QPU

The hypothesis is mostly supported by the experimental results. The quantum annealing
method on a QPU with D'wave’s Annealer yielded the lowest time to reach the minimum
energy state across all residue lengths tested.

The quantum annealing method with turn ancilla encoding on a CPU vielded the highest
percentage in the number of total successful energy conformations across all residue
lengths tested.

The simulated annealing method (control) had the smallest vield, having the lowest
percentage in the number of total successful energy conformations as well as the longest
time to reach the minimum energy state across all residue lengths.




IMPLICATIONS

Next Steps

Exploring 3D modeling and going into secondary/tertiary structures. This project’s
demonstration was limited to 2D lattice modeling with individual amino acid
sequences.

Drug Discovery Applications

As quantum-based models for the prediction of proteins’ structures become more

] |

enhanced, this will enable for the synthesizing of new protein-based drugs to treat
diseases -
: EEEN
11
The shape of the protein accompanied by its folding process is able to dictate its u .===
specific function in the body. By being able to predict a protein’s structure, new 1 11
. . : ENEER
computational drug designs can be created based on the structure of target proteins. EEE
28 (1 |
EEEN
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WORKFLOW PROCESS  reprocessig

Defining energy
evaluations: measuring

Defining variable to hold

combinations of amino Defining possible : EEEN
L : — and outputting current EEE
acids in the chain for directions for the random . . EEE
. . energies, evaluatlng
interaction energy walks . _ 11
. probabilities with EEE
computations neighboring states EEE
ghboring H EEE
H EEEN
EEEN
def preprocessing trajectory(prot_seq, sched, jobid=0): > # Selecting walkmf’ dlreth‘m . .==
Nit = len(sched) 16 J = r?p.rancl'lom.rar?dlnt(B, size=Nit) ’
_ . . :obid + 1 17 # Third amino acid walks only up or right. ...
Eeec = dE.-novl ) nicrosseanc Gkl ) 18 # to avoid redundant conformations .....
np.random.seed(seed) 19 J[I == 2] = 0 EEE
# Sequence translated to index 20 # Throw a dice for proposal acceptance/rejection EEE
s = [d[a] for a in prot_seq 21 K = np.random.uniform(size=Nit)
# Seguence Length 22 # History of accepted conformations EEEN
N = len(s) 23 H = np.empty((Nit,)) EEn
pos = np.zeros((N, 2)) 24 # Energy trace EEEN
pos[:,0] = range(N) 25 E = np.empty((Nit,)) 11
tra = np.empty((Nit, N, 2)) 26 # Current energy [ 111
comb = get combinations(pos) 27 E0 = total_energy(pos, s, comb) .

I = np.random.randint(2, N, size=Nit) 29 for it, (i, j, dice, T) in enumerate(zip(I, J, K, sched)):

# main 1 [ 11

# Selecting Residue 28 main loop EEE
[ ]

HEER



fEEEN
| EEE
AEEn
_ _ | EEEN
Simulated Annealing — m— ENNEEN
ANEEn
fAEEn
HEE
FENEE
N NEEE
Total number of -
Define sequence . . Run simulated L .===
Define annealing , lowest energy
to fold: annealing _ N EEn
schedule . conformations [ IEEE
YYCPETGTWYAGT algorithm toutted UEEE
outputte
] | ]
H NEE
L] | EEEN
fEEEE
18 # Delta E: change of energy will determine the probability 1 # Current energy . .....
19 # of accepting this step 2 E0 = t .....
20 £T3 = TEL & 510 = total_energy(pos, s, comb) . ....
21 # Simulated Annealing 3 for it, (i, j, dice, T) in enumerate(zip(I, J, K, sched)):
22 prob = np.exp(-dE/T) 4 ......
23 accept = prob > dice 5 # Store current position TEERn
24 6 # Rrestored if walk is not successful .....
25 if not accept: 7 curr = pos[i:].co
26 pos[i:] = curr 8 E RY() . ....
2 HILETEER0 9 # Using previous amino acid as reference ...
ig else;o — 10 back = tuple(pos[i] - pos[i-1]) . ....
30 H[it] = 1 v b 1]
31 12 # Random walk represntation ......
32 E[it] = EO 13 wdir = dirs[back][j] - back
33 tra[it] = pos 14 pos[i:] += wdir . .....
34 15 # New energy of the system . ...
35 return tra, H, E, seed, pos 16 El = total_energy(pos, s, comb) . ....
pErEEEE
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WORKFLOW PROCESS

Define sequence to fold:
YYCPETGTWYAGT

Run quantum annealing
algorithm

14

schedule

Total number of lowest
energy conformations

outputted

def turn_ancilla(prot_seq, return Hs=False):

# length of the sequence

N = len(prot_seq)

s = [d[a] for a in prot_seq]

ftg = 0

ntg = 2 * (N-1)

# ancilla qubits for overlap

foq = ftq + ntq

noqg = sum([sum([u(i,j) for j in range(i+4, N+1)])

for i in range(N-4)])
# ancilla qubits for pairwise interactions
fig = foqg + nogq
nig = int((N-3)*(N-2)/2)
Ngbits = ntq + nog + nigq

Define annealing

fEEEn

| (11

ot 11

Quantum Annealing + L ..====

Turn Ancilla Encoding IrEEE

fEEn

_ _ EEE

Define energy functions: PENEE

N NEEE

overlap’ Eback’ pair and PEEn

adjust walk AN EEEE

(11

N EEn

| fEEn

fEEn

fEEn

H NEN

L] (111

fEEEn

B EEEEE

# Energy Functions: .... .

- ?::Z:(:w . ....

return sum([back(j) for j in range(N-2)]) * 1_back ......

s - S AN

R e e CEEEE

def i_z:rixrgy . ....

return sum([sum([w(i,j)*T(i,J)*(2-g(i,j)) for j in range(i+3, N)]) ...

for i in range(N-3)]) . ....

ibB:i.z.: :::]z;(g‘;')terms (symbolic expressions) . .=====
Ho = (H_olap()) if nog > 0 else 0

Hi = (H_inte()) ' . .....

el N EEE

else:‘eturn prot_seq, ¢, energy_expr, (Hb, Ho, Hi) . ....

return prot_seq, g, energy_expr .......
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WORKFLOW PROCESS

Define sequence to fold:
YYCPETGTWYAGT

Define annealing
schedule

Define solver and
corresponding adjacent
graph for embedding

Integrate with D'Wave's
2000-Q Annealer API
with local machine

from dwave.system.samplers import DWaveSampler

from dwave.system.composites import EmbeddingComposite, FixedEmbeddingComposite
import dwave_networkx as dnx

from minorminer import find embedding

import dimod

from sympy.parsing.sympy parser import parse_expr

# Define the solver and get its correspondiing adjacency graph for embedding
solver = DWaveSampler(solver="DW 20000 6")

solver_G = nx.Graph(solver.edgelist)
print("Maximum anneal schedule points: {}".format(solver.properties

["max_anneal_schedule points"]))

# Finding energy of optimal solution

bst_00 = {}
for j, gj in enumerate(q):
bst_00[gqj] = results[best, j]

EEEN
H (11
(11
Quantum Annealing on - l===
D'Wave's Hardware EEE
11
_ EEE
Import library packages: ENEE
D'Wave Sampler, ===
Embedding Composites EEEN
11
(11
(11
Adapt qubits into energy ===
functions and scale | L1
energy landscape = ====
[ 1 |
sample 00 = dict(zip(list(bgm 00.variables), ...
[None]*len(bgm_00.variables))) ...
for key in bgm_0O.variables:

if type(key) == str: ..===

k1, k2 = parse_expr(key).as_coeff mul()[1]
sample_00[key] = bst_00[kl] * bst_00[k2] ...
else: ....
sample_00[key] = bst_00[key] ...
EEEN
sample_spin_ 00 = sample_ 00.copy() ...
for key, val in sample_00.items(): ....
smpl_spin_ 00[key] = 2*val -1 . ...
mene_00 = bgm 00.energy(sample 00) ...
mene_spin_00 = bgm spin_00.energy(sample spin_00) [ | |
print((mene_00, mene_spin 00)) [ 111
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SUPPLEMENTAL WORK s

Full Code Implementation: https:/github.com/aliceliu7/quantumfold » DEEE

Background - Protein Folding and Drug Discovery: L .===
https:/medium.com/@aliceliu2004/protein-folding-and-drug-discovery-a-guantum-approach-6a
2b08568c3a u

Implementation - Quantum Annealing with 2D Lattice Protein Folding;

https:/medium.com/@aliceliu2004/quantum-annealing-2d-lattice-protein-folding-31e7049aa441 N

CONTACT . ama

Email: aliceliu2004(@gmail.com u EEEEE
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