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PROBLEM




BREAST CANCER: CURRENT STATE

3.8 million women are diagnosed with breast cancer in US’
1in 8 women will develop invasive breast cancer over her lifetime
Rate for miss-classifying breast cancer cells: 20%>
Late / Misclassified Diagnosis: decreases chance of survival 90% — 15%
Detecting breast cancer at early stage:
o Better Treatment Options
o Higher Chance of Survival

Current Key Challenges
1) Detecting breast cancer earlier (time)
2) Decreasing misdiagnosis rates (accuracy)

"'Romeo, Elisa, et al. “Breast Cancer Misclassification: A ... - Journals.sagepub.com.” Sage Journals, 201, https://journals.sagepub.com/doi/full/10.2217/WHE.!1.69.
2US. Breast Cancer Statistics.” Breastcancer.org, 13 Jan. 2022, https:/www.breastcancer.org/symptoms/understand_bc/statistics.



CURRENT ML: SVMs

Support Vector Machines (S\VMs) are a supervised learning algorithm, where given
labeled training data, will output an optimal hyperplane able to categorize new

examples

Finding the optimal hyperplane becomes more difficult as the dimensions increase.
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COMPUTATIONAL LIMITATIONS SeeEan
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The Kernel Trick is able to map non-linear data set into a higher dimensional space E
where the hyperplane can be found to separate the samples.
In this 3D example, various transformations and the addition of the z-axis are able to ]
be added to draw the plane. IEEE




CURRENT ML: SUPPORT VECTOR MACHINES

What if the data points dimensions
projected keep increasing and the
data becomes more complex?

Classical computers are unable to
operate through these large
computations without
compromising time

—> can takes weeks to train.

Time and efficiency are both obstacles- our
today's (classical) computers lack the
computational power to effectively model
classification techniques with increasing
dimensionality.




GUANTUM MACRHINE LEARNING

Amplitudes allow for new optimization
routes to be found

intelligence leveraging classical data and machine

I I Intersection of quantum computing and artificial

learning algorithms to be run on quantum processors
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Based on the idea of amplitude encoding = EEE
amplitudes of a quantum state are associated with ===
the inputs and outputs of computations. H EEN
EEEN

EEEN

States in qubits with amplitudes allows for an .==
exponentially compact representation = associating EEE
a discrete probability distribution over random binary ..===
variables with a classical vector. EEE
EEEn

_ _ _ EEE

Space grows polynomially in the number of qubits, EEEN
. . . . 11
leading to logarithmic growth in the number of EEEE
amplitudes and dimension of the input. u ===
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THE QUANTUM ADVANTAGE

Quantum computing = relies on quantum mechanical properties such as superposition,
entanglement and tunneling, non-existent in current classical methods.

Qubits = quantum bit that can be in the state of O, 1, or a superposition of 0 and 1 at the
same time. (states 00, 01, 10, 11), which allows for calculations to be run simultaneously.

n qubits = 2" solutions able to be run at the same time — speedup is ideal for optimizatiom
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RESEARCH QUESTION

Can quantum computing methods speed up the process during binary
classification, specifically when dividing breast cancer cells into benign
and malignant groups?

HYPOTHESIS

The method that leverages 2 qubits with the quantum support vector machine
algorithm will yield the most effective results in terms of the accuracy when
classifying breast cancer cells.

This method can leverage the “quantum advantages” within the algorithm
including the faster runtime, greater capacity, and higher efficiency “speedups”
but will not be susceptible to noise and decoherence as experienced with
quantum hardware when running on a QPU.



METHODOLOGY -
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EXPERIMENT OVERVIEW + DETAILS " gEEam

ENNEEE
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OBJECTIVE 1T

AENEE

Using the quantum support vector machine algorithm on a quantum computer to explore its - ====

benefits in terms of speedups and increased accuracy (over classical computers) with the N EEEE

ificati EEn

classification of cancerous cells s EEE

" EEEE

OVERVIEW —11-

H EER

Tests the efficiency in the binary classification of breast cancer cells as benign or malignantin4 &M .====

different parts: H EEEEE

1)  Classical Support Vector Machine Algorithm on a CPU (control) ENEEE

2)  Quantum Support Vector Machine Algorithm with a 2-Qubit SImulation on a QPU =.====

3) Quantum Support Vector Machine Algorithm with a 4-Qubit Simulation on a QPU AEEE

4)  Quantum Support Vector Machine Algorithm with an 8-Qubit Simulation on a QPU - .====

NN
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What will be measured: classification accuracy (% of cells correctly classified) L .===..
All the quantum algorithm implementations will be run on IBM's quantum hardware through an L L

API connected to the local machine
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ENEEE

VARIABLES: INDEPENDENT, DEPENDENT, CONTROL EEEE
EEE

EENEE

Independent: Type of Method Tested (Classical SVM Algorithm on CPU or Quantum SVM Algorithm on QPU) N NEEE
Dependent: Percentage in the number of correctly classified cells EE ====
Control Variable: Classical SVM Algorithm on CPU (method that is currently being used today) - ===
HE NEEEE

MATERIALS ====
: : . : . : H EEN

e UCI Machine Learning Repository Breast Cancer Wisconsin (Diagnostic) Data Set [ ] | EEEE

o Parameters: Texture, Perimeter, Area, Smoothness, Compactness, Concavity, Symmetry - =====

e IBM Quantum Cloud Service API. This is leveraged to run the algorithms and test data points on IBM'’s ENEEnE
quantum hardware processors using a Python Interface. =.====

e |IBM's Qiskit Software Development Kit VVersion 0.23.4. .====

e Python Version 3.7.4 H EEEE

e  Scikit Learn Software Package Version 0.21.3. - .===

e Interactive web-based computational environment, ex. Jupyter Notebook was used. ] EEEEE

e Modern Operating System consisting of x86 64-bit CPU (Intel / AMD architecture) with at least 4 GB ..=====
RAM and 5 GB free disk space. For this experiment, the Mac OS Mojave Version 10.14.5 with a 1.1 N EEE

GHz Intel Core m3 was used. .=.====



ALGORITHMS - SUPPORT VECTOR MACHINES '=E.

I I To draw the line that separates the different classes, the support vector machine EEEEE

algorithm finds a decision boundary with the widest distance of margin. EEE
AN EEEE

A vector w represents the decision boundary starting from the origin and a normal
1 plane is drawn. An unknown sample uis included in the feature space.

Vector uis projected onto vector w by finding their dot product to determine which
side the unknown sample lies on.

The decision boundary has a separation of distance from -7 to + 7 for all training 111
samples in order to define the distance from each support vector to the decision | EEEE
boundary. This is represented by the equation: -1, R E€X, » EEEER

T {+1» X € X EEEEEE
@ W+b)21 5 Emm
(X w =
Vi EEE
EER
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ALGORITHMS - SUPPORT VECTOR MACHINE '==.

The distance between the support vectors are equal to the projection of the difference FEENE

of the vectors onto the unit vector in the direction of the normal vector w. The distance AEER

_ o _ AN EEEE
between the support vectors with the maximized constraints:
yields ( yields yields |w|2 [
)

max(width) —— max — min(|jw]) — mln(

Apply the kernel trick. xand x’in the input space X, the kernel function k(xx) is

expressed as inner product in space I/ to operate in higher-dimensional feature space.

Support Vectors

+
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ENEERE

AEEnE

Takes the classical machine learning algorithm and performs the support vector machine ..===

on a quantum circuit in order to be efficiently processed on a quantum computer. o ====

AN EEEE

: . EEn

The quantum state space is used as a feature space. Data is mapped W mEnm

to a quantum state by applying the feature map circuit to a reference =

state. /S e/ |m

‘I’/“ﬁ s(” 3

Short-depth quantum circuit is applied to the feature state. The @ = |

circuit with / layers is parameterized and optimized during training. X 6/ o Y =

A v

/% / . —

For a two label classification {-7, + 7}a binary measurement is /(@ Ll Y4 o =

applied to the quantum state. (Bt apides —_— |

Tos-CEmm

Decision rule: perform Rrepeated measurement shots to obtain the ¥ EEEE

empirical distribution. The empirical risk is defined given by the error - .===..
probability of assigning the incorrect label averaged over the H N

samples in the training set T.



AEEERE
H (11
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, H EEEN
Preprocessmg I EEEEEE
ENEERE
AEEnE
ST
Use Principal
o . P . Scale the data N NEEE
Divide the dataset Standardize the Component Analysis bt 1and 1 EEEE
into training and data set's features (PCA) to reduce and etween an EN EEER
) . o fit the dataset to set the range for EEn
testing portions: to fit into a normal the S  Vect » EEE
70% training and distribution. dimensions into & >upport vector B  NEEE
30% testing number of qubits Machine model. ====
H EER
L] | EEEN
“EEEN
def breast_cancer(training size, test_size, n, PLOT DATA=True): #Use PCA to break down data from 30 to n dimensions ImeEE
class_labels = [r'Benign', r'Malignant'] #(finds patterns while keeping variation) ImEEE
pca = PCA(n_components=n).fit(X_train) . . . .
#testing classifier accuracy X_train = pca.transform(X_train)
#training: 70%, testing: 30% X_test = pca.transform(X_ test) 11117
X _train, X test, Y train, Y test = [ 1 1]
train_test split(cancer.data, cancer.target, # Scaling the data to be between -1 and 1 imEEn
test_size=0.3, random state=109) samples = np.append(X_train, X_test, axis=0) . . . .
minmax scale = MinMaxScaler((-1, 1)).fit(samples) L] |
#Standardize dataset features X _train = minmax_scale.transform(X_train) T T 1
#to fit a normal distribution X test = minmax scale.transform(X_ test) IEEEN
scaler = StandardScaler().fit(X_train)
X _train = scaler.transform(X_train) # Picking sample to train model from: I. . . .
X _test = scaler.transform(X_test) training input = {key: (X_train[Y_train ==k, :]) I. . . .
[:training size] for k,key in enumerate(class_labels)} I . . .
16 test_input = {key: (X_train[Y train == k, :])[training_size:( (111
training size+test_size)] for k, key in enumerate(class_labels)} I. . . .




WORKFLOW PROCESS  sgeritm implementation s

Set the dimensionality

and number of qubits
the circuit will have

#split up data for algorithm input to be generated

n = 2 # number of features/qubits to use
training dataset_size = 20
testing dataset_size = 10

sample Total, training input, test_input,
class_labels = breast_ cancer

(training _dataset_size, testing dataset_size, n)

datapoints, class_to_label =

split_dataset to_data_and_labels(test_input)

print(class_to_label)
I/

Initialize the feature
map in order to build
the quantum SVM

Set the necessary parameters
for the algorithm to train on,
including the depth of the
circuit, number of shots and
initializing the pseudo-random
number generator

temp = [test_input[k] for k in test_input]
total_array = np.concatenate(temp)

aqua_dict = {
'problem': {'name': 'classification’,’
random_seed': 100},
'algorithm': {'name': 'QSVM'},

'backend': {'provider': 'giskit.BasicAer',
'name’': 'gasm_simulator', 'shots': 256},
'feature map': {'name': 'SecondOrderExpansion',
'depth': 2, 'entanglement': 'linear'}

algo_input = ClassificationInput(training input,
test_input, total_array)
result = run_algorithm(aqua_dict, algo_input)

for k,v in result.items():
print("'{}' : {}".format(k, v))



RESULIS
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PREPROCESSING & PCA

CORRELATIONS BETWEEN DATA FEATURES
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CLASSICAL SVM

precision
0.0 1.00
1.0 0.97
accuracy
KERNEL MATRIX macro avg 0.99
weighted avg 0.98

Testing success ratio: 0.85

gnant

is_ mali

is_benign

PERFORMANCE MEASURES

recall

fl-score

0.98
0.98
0.98

CORRELATION MATRIX

support

63
108

171
171
171

predicted_malignant predicted_benign

is_malignant
is_benign

predicted_malignant

10

predicted_benign

8
3

3

8

8

0
60

<matplotlib.axes._subplots.AxesSubplot at 0Oxla26calel0>

- 108
- 100
- 80
g - | )

£



2l

GUANTUM SVM ALGORITHM

'predicted labels' : [01 00001 1101101101111)
'predicted_classes' : ['Benign', 'Malignant', 'Benign', 'Benign’', 'Benign’,
ant', 'Malignant', 'Malignant', 'Benign', 'Malignant’', 'Malignant’', 'Benign’,
alignant', 'Benign', 'Malignant', 'Malignant', 'Malignant', 'Malignant']

'Benign', 'Malign
'Malignant', 'M

2 QUBITS KERNEL MATRIX 4 QUBITS KERNEL MATRIX 8 QUBITS KERNEL MATRIX

Testing success ratio: 0.9 Testing success ratio: 0.75 Testing success ratio: 0.65

04 0




RESULTS OVERVIEW

Percentage of correctly classified breast cancer cells - Averages

Classical SVM Quantum SVM -  Quantum SVM-  Quantum SVM-
Algorithm 2 Qubits 4 Qubits 8 Qubits

% of Correctly
Classified Cells

85% 90% 75% 65%

Precision 88% 98% 78% 65% EEE
Recall 85% 97% 72% 60% H EEEE
F1 Score 79% 89% 6L4% 55% . LEEE
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DISCUSSION




RESULTS ANALYSIS

Highest number of accurately classified cells: Quantum SVM Algorithm with a
2-Qubit Simulation

2%

The hypothesis is mostly supported by the experimental results. The quantum SVM
algorithm method with a 2-qubit simulation on a QPU with IBM's quantum hardware
yielded the highest accuracy when classifying breast cancer cells as benign and malignant

The quantum SVM algorithm with an 8-qubit simulation on a QPU with IBM's quantum
hardware had the lowest yield, with the lowest classification accuracy in the breast cancer
cells

The classical SVM algorithm ran on a CPU yielded higher classification accuracies than the
4-qubit and 8-qubit implementations with the quantum SVM algorithm, but was
outperformed by the 2-qubit simulation
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AEEERE
H (11
AEEn
IMPLICATION " . ux=mun
ENNEEE
ENEERE
“aaE
Next Steps smrEs
N NEEE
Implementation of other unsupervised quantum-enhanced algorithms including quantum fEEn
convolutional neural networks (CNNs) for image classification and multivariate image analysis N .===
with implications in self-diagnosis. This project’'s demonstration was a proof of concept for ¥ EEE
quantum SVMs with labeled data for a binary output H SEEnE
AEEN
Machine Learning Applicati n-EEE
Quantum Machine Learning Applications =n “mmmm
As hardware developments are being made for quantum error correction and noise reductionmore m mEEEE
enhanced clustering techniques for pattern recognition and image classification will be enabled. ..====
Implications range from medicine, drug discovery, genomics, and security. A few areas boosted: ll====
. . . . : _ ENEEE
e Chemical Simulation: Mapping out molecules and atoms for the creation of new materials m EEEN
Quantum Matter Simulation: Modeling molecular interactions at an atomic level, allowing n .===
new pharmaceuticals and medical research u .===ll

e Financial Applications: simulation of the stochastic nature of financial markets for more H EHE

accurate modeling and risk analysis.
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IN-DEPTH RESULTS ANALYSIS

Breast Cancer Dataset (With PCA)

® Benign

Mal t
® alignan °

{'Benign': 0, 'Malignant': 1}

e PCA goal: increase data interpretability + minimize
information loss
e 5 parameters reduced to 2 principal components

27

® Performance Measures

True Positives (TP)
True Negatives (TN)
False Positives (FP)
False Negatives (FN)

Precision=TP /TP + FP
Recall=TP /TP + FN

F1 Score - Weighted Average of Precision and Recall
*The higher, the more accurate |
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LIMITATIONS & BARRIERS -

Challenge: o
(1]

e Integrating IBM Quantum 2000Q Processor with local machine B
e Pre-processing - encoding classical data into quantum states

Limitations:

e (urrent state-of-the art quantum processors subject to: — 11

o  Decoherence - environment changes states of qubits into non-operational EEEEE

o Noise - random fluctuations of signals | EEEE

o  Early-Stage Error Correction - protecting quantum information » EEEE

e Production Challenges: cold temperatures (-273 degrees C), bulky, expensive, # of [ ANEEE
qubits limited — cannot be commercialized E EE



DATASET DETAILS CEEms

Dataset: ¥ EEEE

Breast Cancer Wisconsin (Diagnostic) Data Set EEN

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics: Multivariate Number of Instances: || 569 || Area: Life

| Attribute Characteristics: H Real H Number of Attributes: H 32 ” Date Donated ” 1995-11-01 I

Associated Tasks: ‘ Classification ‘ Missing Values? ‘ No | Number of Web Hits: ” 1696313 l

Details: _—

31 different features for each cell nucleus — .===

ID number with the diagnosis type (M = malignant, B = benign) m EEEEE
Diagnosis as benign / malignant used as target m ...==
5 / 31 features used for determining the diagnosis type when training model O ===

EER

29
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UML BENEFITS

= Main Task: generate a quantum state describing the hyperplane with the
matrix inversion algorithm, then classify the state
= Algorithmic Complexity - quantum SVM is logarithmic in feature size and
number of training data
s O(logd) qubits vs. O(d) bits

Advantages:
= Speed - maximized when training data kernel matrix is dominated by a small
number of principal components + Amplitude Encoding
= Data privacy - never requires explicit representation of all features of each of
the training examples, but able to generate necessary data structure
s Individual features of the training data are fully hidden from user
once the kernel matrix is generated
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AEEn

H EEEN

ENNEEE

SVMS PROCESSES

L] 1]

L]

AENEE

" oEER

Main Task: classify a vector into 1/ 2 classes given M training data points EE .===

Process: | | | | » EEE

s SVM finds a maximum-margin hyperplane with a normal vector that H SEEnE

. AEEN

divides the 2 classes EEENE

= The margin is given by 2 parallel hyperplanes separated by the max 1 | ..===

possible distance with no data points inside the hyperplane - =====

SVM fits under a class of problems where the number of equations are more ..====

than the number of unknowns — there is an overdetermined system of ll====

equations ANEEE

. : . H EEEE

Least Squares Fitting - standard approach to approximately solve this EEE

regression analysis problem: minimizes sum of squares of residuals made in u ..====
every single equation ..==.
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SUPPLEMENTAL WORK )

Full Code Implementation: https:/github.com/aliceliu7/quantum-SVM

Implementation - Quantum SVMs for Binary Cell Classification:

https:/medium.com/@aliceliu2004/guantum-support-vector-machines-a-new-era-of-ai- 126
2dd4b2c/e
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